صفحه اصلی | ان آر تی سی | صفحه اصلی<

09392522438  
   EN | FA

تاثیر کرنش[1] بر خواص الکترونی نانوریبون های گرافنی

همانطور که پیشتر اشاره شد نانوریبون های آرمچیر نیمه رساناهایی با گاف نواری مستقیم هستند و به سه دسته تقسیم بندی می شوند. برای ساخت قطعات الکتریکی بر پایه ی نانوریبون های گرافنی آرمچیر، امکان مهندسی و تغییر خواص الکتریکی این مواد اهمیت بسیاری دارد. یکی از راه های تاثیرگذاری بر خواص الکتریکی اعمال کرنش خارجی بر ماده است. اینکه چگونه تغییرات ساختاری و موقعیت قرارگیری اتم ها می تواند منجر به تغییراتی در خواص الکتریکی مواد شود، یکی از زمینه های مورد علاقه ی محققین می باشد.

لیا سان[2] و همکرانش به کمک تئوری تابعی چگالی (DFT) بطور مفصل این مساله را مورد بررسی قرار دادند. برای بررسی این پدیده تغییر فرم ساختار نانوریبون های آرمچیر با اعمال کرنش که با ε نماش داده می شود بر روی ماده بررسی صورت می گیرد. این کرنش بصورت تعریف می شود که در آن r و r0 بردار شبکه های تغییر یافته و اولیه ی سیستم (Ǻr0=4.287 ) در راستای طول نانوریبون می باشند. کرنش، با اعمال این تغییر در طول بردارشبکه ی سیستم مورد نظر تعریف و مطالعه می شود. برای بررسی تغییرات پیوند های C-C در نانوریبون گرافنی Na=13 چهار پیوند انتخاب شده که در شکل-1 مشاهده می شود.

Nanoribbon band structure

شکل-1: موقعیت قرارگیری پیوندهای a1، a2، a3 و a4 در ساختار نانوریبون آرمچیر گرافنی.

کاملا واضح است که اعمال کرنش کششی منجر به افزایش خطی طول پیوند های C-C شده و بیشترین تغییر در طول پیوند a1 رخ میدهد. اما برخلاف تصور پیوند های a3 و a4 با افزایش کرنش تغییر بسیار کمی می کنند که دلیل آن نیز اثرات لبه ای می باشد (شکل-2). مطالعات انجام شده روند مشابهی را برای سایر عرض های نانوریبون های آرمچیر گرافنی نشان می دهد.

Nanoribbon band structure

شکل-2: تغییر طول پیوندهای a1، a2، a3 و a4 نسبت به افزایش کرنش.

از آنجا که نانوریبون های آرمچیر گرافنی سه دسته بندی متفاوت دارند لیا سان و همکارانش سه نانوریبون با عرض های Na=12, 13, 14 را به نمایندگی از هر یک از این دسته ها انتخاب کردند. همانگونه که در شکل-3 دیده می شود بیشترین مقدار گاف نواری محاسبه شده برای نانوریبون های Na=12, 13, 14 به ترتیب در کرنش های ε= -4.5%, 7.3%, 1.3% اتفاق می افتد. همانگونه که مشاهده می شود روند تغییر گاف نواری با افزایش کرنش روندی زیگزاگ گونه دارد و تغییراتش خطی نیست.

Nanoribbon band structure

شکل-3: تغییرات گاف نواری نانوریبون های آرمچیر با افزایش کرنش.

مطالعات انجام شده بر روی نانوریبون زیگزاگ با پهنای Nz=13 نشان می دهد که تغییرات گاف نواری در این نوع نانونوارها بسیار کمتر از مشابه آمچیر خود می باشد و با افزایش کرنش این نانوریبون ها همچنان نیمه رسانا باقی می مانند. نتایج بدست آمده برای نانوریبون Nz=13 که گاف نواری ساختار ایده آل آن 0.31 eV می باشد تحت کرنش های 0.5% و -0.5% به ترتیب 0.29 eV و 0.35 eV می باشند.

Nanoribbon band structure

شکل-4: ساختار نواری نانوریبون های زیگزاگ Nz=13 تحت کرنش های 5%، 0% و -5% .

 

Reference

L. Sun, Q. Li, H. Ren, H. Su, Q.W. Shi, J. Yang, The Journal of chemical physics, 129 (2008) 074704.

 


[1]Strain

[2]Lia Sun

منتشرشده در مقاله
یکشنبه, 19 آبان 1398 ساعت 00:21

آلایش در گرافن (doping)

آلایش در گرافن و تاثیر آن بر خواص این ماده

گرافن داپت شده با نیتروژن

با توجه به تنوع بسیار زیاد در فرهای مختلف ساختار گرافن و خواص منحصر به فرد این ماده، به تازگی مورد توجه محققین جهت استفاده در ابرخازن های قرار گرفته است. نیتروژن، در جدول تناوبی عناصر در کنار کربن قرار داشته و الکترون نگاتیوی آن از کربن بیشتر است، به همین دلیل جایگزین کردن یکی از اتم های کربن در گرافن منجر به تغییر در ساختار الکترونی آن می گردد. بر همین اساس، گرافن داپت شده با نیتروژن بر اساس ساختار ویژه اش کاندید امیدبخشی جهت ارتقاء عملکرد ابر خازن ها، باتری های لیتیومی، و ترانزیستورها می باشد [1].

ترکیب نیتروژن با گرافن می تواند سه نوع ساختار متفاوت را شکل دهد:

گرافیتی-[1]N

پیریدینیک-N[2]

و پیرولیک-[3]N(شکل-1).

در نوع گرافیتی-N اتم نیتروژن داپت شده جایگزین یکی از اتم های حلقه ی هگزاگونال گرافن می شود.

اما در ساختارهای پیریدینیک-N و پیرولیک-N، الکترون های اوربیتال π پیوندهایی با هیبریداسیون، به ترتیب، sp2 و sp3 تشکیل می دهند [2].

Different structures induced by nitrogen atom dopants in graphene

شکل-1: ساختارهای مختلف ناشی از داپت اتم نیتروژن در گرافن.

 

بر اثر داپینگ نیتروژن، تراز فرمی به بالا ی نقطه ی دیراک جابجا شده و سپس چگالی حالت ها در اطراف تراز فرمی به یک حالت ثابتی منتهی می شود که در نتیجه میان نوار رسانش و نوار ظرفیت گاف نواری ای تقریبا به اندازه ی 0.2 eV پدید می آید (شکل-2) [3].

به همین دلیل گرافن داپت شده با نیتروژن به عنوان کاندید مناسبی جهت استفاده در ادوات نیمه هادی بسیار مناسب است.

 

Band gap created by doping of nitrogen to graphene at point K

شکل-2: گاف نواری ایجاد شده بر اثر داپ نیتروژن به گرافن، در نقطه ی K.

 

گرافن داپت شده با برم

عنصر برم (B)، خواص منحصر بفرد و غیر قابل مقایسه ای دارد. به این دلیل که برم در جدول تناوبی عناصر در کنار کربن قرار دارد، محققین بسیاری امکان داپ برم را در گرافن بررسی کرده اند [4]. ساختار گرافن داپت شده با برم، به روش جالبی سنتز می شود.

در این روش اکسیدگرافیت در حضور اکسید برم (به عنوان منبع برم) بازپخت شده و گرافن داپت شده با برم تولید می گردد. به علاوه الکترون نگاتیوی برم از کربن کمتر است و از همین روی B-گرافن از خود پتانسیل خوبی جهت استفاده در واکنش کاهش اکسیژن (ORR[4]) نشان می دهد.

همچنین به دلیل پایداری و طول عمر بالا، به عنوان ماده ی اصلی کاتالیزور های مبتنی بر پلاتین (Pt) مورد استفاده قرار می گیرد. علاوه بر این، مطالعات مبتنی بر رهیافت DFT نشان داده اند که داپت برم در گرافن منجر به القاء چگالی اسپینی بالاییدر ساختار گرافن می گردد که نقش بسیار تاثیرگذاری بر جذب اکسیژن و مولکول OOH در مقایسه با گرافن خالص دارد [5].

همانطوری که در شکل-3 نشان داده شده است، از آنجایی که اتم برم تنها سه الکترون در لایه ی ظرفیت دارد، اوربیتال pz آن خالی خواهد بود، در مقابل تک الکترون درون اوربیتال نیمه پر pz اتم کربن همسایه در آن یک چگالی اسپینی جایگزیده القاء می کند. از آنجایی که الکترون نگاتیوی اتم برم از اتم کربن کمتر است، پیوند تشکیل شده بیشتر به سمت کربن متمایل می شود و در نتیجه این جایگاه قطبیده ی پدید آمده در ساختار گرافن داپت شده با برم، به عنوان سایت فعال کاتالیز می تواند عمل کند. 

 

How to fill carbon and bromine pz orbitals in B-graphene

شکل-3: نحوه ی پر شدن اوربیتال های pz کربن و برم در B-گرافن.

 

گرافن داپت شده با گوگرد

نخستین بار ساختار الکترونی گرافن داپت شده با گوگرد بصورت تئوری محاسبه شد، که نشان داد این ترکیب با توجه به درصد سولفور داپت شده در گرافن، می تواند نیمه رسانایی با گاف نواری کوچک و یا یک فلز باشد [6]. دنیس[5] و همکارانش در این تحقیق نشان دادند که حتی یک تک اتم گوگرد در یک صفحه ی گرافنی 5×5 می تواند تاثیر جدی در ساختار نواری این ماده پدید بیارورد. محاسبات آنان که با نرم افزار محاسباتی SIESTA انجام شد نشان داد که گوگرد در این صفحه ی گرافنی گاف نواری ای به اندازه ی 0.3 eV و یک پیک بسیار تیز در نزدیکی تراز فرمی به وجود می آورد (شکل-4).

 

The density of graphene states a before sulfur doping b after sulfur dubbing

شکل-4: چگالی حالت های گرافن، a) قبل از داپ گوگرد، b) بعد از داب گوگرد.

 

برای سنتز S-گرافن، از هر دو ماده ی سولفید هیدروژن و دی سولفید بنزیل به عنوان مواد تامین کننده ی گوگرد، به همراه اکسید گرافن استفاده می شود.

 

گرافن داپت شده با سیلیسیم

تحقیقات تئوری و تجربی بسیاری جهت اصلاح عملکرد سنسوری گرافن جهت شناسایی مولکولهای مختلف انجام شده است. مکانیزم این سنسورهای گازی بر مبنای تغییر رسانندگی الکتریکی گرافن به واسطه ی انتقال بار میان گرافن و ماده ی جذب شونده می باشد. اکثر مطالعات نشان می دهند که گازهای NO، NO2 و ... که به عنوان گازهای آلاینده می شناسیم، بصورت فیزیکی بر روی گرافن خالص جذب می شوند. داپ سیلیسیم (Si) در گرافن بسیار کمیاب است، اما به تازگی محققین جهت استفاده در کاتالیزورهای مبتنی بر گرافن به سراغ این ماده نیز رفته اند. تا کنون گزارشی مبنی بر استفاده از Si-گرافن در در کاتالیست ها ارائه نشده است.

زاهو و همکارانش [7] به کمک رهیافت تئوری تابعی چگالی (DFT) به بررسی جذب گازهای NO، N2O و NO2 بر روی Si-گرافن پرداختند و نشان دادند که این ماده می تواند سنسور بسیار خوبی برای شناسایی گازهای NO و NO2 باشد. داپ اتم Si در گرافن باعث جابجایی نوار رسانش گرافن شده و آن را کمی به بالاتر منتقل می کند در نتیجه گاف نواری بسیار کوچکی به اندازه ی 0.054 eV در این ماده به وجود می آید (شکل-5). با وجود آنکه Si چهار ظرفیتی است اما در این ساختار به دلیل طول پیوند های بلند تری که با اتم کربن تشکیل می دهد (Si-C) ساختار هرم شکلی پیدا می کند و به همین دلیل هیبریداسیون sp3 به خود می گیرد، که همین هیبریداسیون منجر به ایجاد ترازهای جایگزیده در اطراف تراز فرمی شده و تاثیر کوچکی بر ویژگی های شبه فلزی گرافن می گذارد.

 

Geometric shape and band structure of graphene doped with silicon

شکل-5: شکل هندسی و ساختار نواری گرافن داپت شده با سیلیسیم.

 

 

References

[1] Y. Lu, Y. Huang, M. Zhang, Y. Chen, Journal of nanoscience and nanotechnology, 14 (2014) 1134-1144.

[2] X.-K. Kong, C.-L. Chen, Q.-W. Chen, Chemical Society Reviews, 43 (2014) 2841-2857.

[3] D. Usachov, O. Vilkov, A. Gruneis, D. Haberer, A. Fedorov, V.K. Adamchuk, A.B. Preobrajenski, P. Dudin, A. Barinov, M. Oehzelt, Nano letters, 11 (2011) 5401-5407.

[4] A. Lherbier, X. Blase, Y.-M. Niquet, F. Triozon, S. Roche, Physical Review Letters, 101 (2008) 036808.

[5] X. Kong, Q. Chen, Z. Sun, ChemPhysChem, 14 (2013) 514-519.

[6] P.A. Denis, R. Faccio, A.W. Mombru, ChemPhysChem, 10 (2009) 715-722.

[7] Y. Chen, B. Gao, J.-X. Zhao, Q.-H. Cai, H.-G. Fu, Journal of molecular modeling, 18 (2012) 2043-2054.

 


[1]Graphitic N

[2]Pyridinic N

[3]Pyrrolic N

[4] Oxygen Reduction Reaction

[5]Denis

منتشرشده در مقاله
پنج شنبه, 02 آبان 1398 ساعت 13:57

DFT الکترونی

 

بررسی خواص الکترونی ساختارها به کمک DFT

میزان رسانایی الکترونی در مواد جامد بسیار متنوع است. بر اساس میزان مقاومت مواد در عبور جریان الکتریکی، مواد مختلف را می‌توان به دسته‌های مختلف رسانا، نیمه رسانا و عایق دسته‌بندی کرد.

ساختار نواری یعنی ترازهایی از انرژی که الکترون می‌تواند در آنها حضور داشته باشد و با حضور نداشته باشد.

به مناطقی که الکترون نمی‌تواند حضور داشته باشد منطقه ی ممنوعه، گاف نواری یا Band Gap می گویند. با محاسبه ی ساختار نواری و گاف نواری مواد می توان به فلز (Metal)، شبه فلز (Semimetal)، نیمه رسانا (Semiconductor) و یا نارسانا (Insulator) بودن مواد پی برد. حتی با محاسبات اسپینی می توان به ساختار هایی که نیمه فلز (Half-metal) هستند نیز پی برد.

امروزه تئوری تابعی چگالی (DFT) به یکی از رایجترین روش های بررسی خواص الکتریکی نانوساختار ها و ساختار های بلوری تبدیل شده است و توسعه ی روش ها و تقریب های محاسباتی منجر به افزایش دقت این محاسبه ها شده است. برخی از اطلاعاتی را که می توان از این رهیافت استخراج کرد در زیر مشاهده می کنید:

    • رسم ساختار نواری (BandStructure)
    • محاسبه ی گاف نواری (Band gap)
    • رسم چگالی حالت ها (DOS)
    • سم چگالی حالت های موضعی (PDOS)
    • محاسبه ی جرم موئثر حامل ها
    • محاسبه ی تحرک پذیری حامل ها
    • تاثیر ناخالصی بر خواص الکتریکی
    • تاثیر نقص بلوری بر خواص الکتریکی.

IMAGE-xqy

 

 

 

در حال حاضر پروژه های بسیاری در قالب پایانامه های دکتری و ارشد برای داشنجویان تحصیلات تکمیلی رشته های فیزیک، شیمی، برق و مهندسی مواد جهت بررسی خواص الکتریکی مواد بلوری و نانوساختار های تعریف شده و به یکی از زمینه های بسیار محبوب در میان اساتید و دانشجویان این رشته در آمده که منجر به هجوم محققین به این علم نوین گردیده است.

به دلیل وسعت بسیار زیاد این حوزه، انتشار مقاله در ژورنال های بسیار معتبر به سادگی امکانپذیر است. نرم افزارهای مختلفی می توانند این پارامترها را محاسبه کنند که از پرکاربردترین آنها Quantum ESPRESSO و Siesta می باشند.

 

 

نمونه مقالاتی که در این حوزه منتشر شده اند:

 

    • Silva, Juliana CM, Heitor A. De Abreu, and Hélio A. Duarte. "Electronic and structural properties of bulk arsenopyrite and its cleavage surfaces–a DFT study." RSC Advances 5.3 (2015): 2013-2023.
    • Park, Changwon, et al. "Electronic Properties of Bilayer Graphene Strongly Coupled to Interlayer Stacking and an External Electric Field." Physical review letters 115.1 (2015): 015502.
    • Rossi, Antonio, et al. "Nano-Scale Corrugations in Graphene: A Density Functional Theory Study of Structure, Electronic Properties and Hydrogenation." The Journal of Physical Chemistry C 119.14 (2015): 7900-7910
منتشرشده در مقاله

7 روز هفته، 24 ساعته پاسخگوی شما هستیم

social 16social 13social 09 social 05