09392522438  
   EN | FA

نسل جدید سلول خورشیدی

سه شنبه, 18 دی 1397 ساعت 10:35
خواندن 3891 دفعه

 

نسل جدید سلول های خورشیدی، پروسکایت ها

 

توان تبدیل انرژی خورشیدی (PCE) نقش زیادی در تولید الکتریسیته در آینده  دارد. سلول‌های خورشیدی پروسکایتی یکی از مهم‌ترین انواع سلول‌های خورشیدی هستند که توسط آن ها می‌توان انرژی خورشیدی ارزان تری را  تولید کرد، پس باید به دنبال افزایش بازده در تبدیل انرژی این سلول های خورشیدی باشیم.

 

بازده بالا در تبدیل انرژی سلول های خورشیدی پروسکایتی، به علت جذب قوی نور و برانگیختگی های مرزی ضعیف آن ها می باشد. با افزایش اندازه ی بلور و بهبود کیفیت بلوری هسته ها و لایه ی سطحی ارتقا داده شده، به بازده بالای 18% در توان تبدیل انرژی خورشیدی در این نوع سلول های خورشیدی رسیده اند.

با روش Hot-Casting که بر محلول انجام می شود و با افزایش دمای زیرلایه تا c◦ 190 و به هنگام استفاده از محلول هایی با نقطه ی جوش بالا مانند N-دی متیل فرمالید (DMF) و N-متیل-2-پیرولیدون (NMP)، اندازه‌ی هسته به طرز قابل توجهی افزایش می یابد (1 تا 2 میلیمتر).

رشد بلور با افزایش اندازه‌ی هسته دو مزیت اساسی دارد:

1) کاهش فاصله‌ی بین نواحی به علت هسته‌های بزرگ بر اختلال‌های باری چیره شده و پسماندی وجود نخواهد داشت.

2) هسته های بزرگتر در حالت بالک نقصان کمتر و تحرک بالاتری دارند که به حامل های تولید نور اجازه‌ی انتشار در طول مجموعه بدون برخوردهای مکرر به ناخالصی ها را می‌دهد (1).

 

عملکرد قابل توجه فوتوولتائیکی پروسکایت های هیبریدی به طول عمر بلند حامل‌های آن ها و تاثیر بالای فوتولومینانس نسبت داده شده است. شرایط رشد پروسکایت و عملیات لایه نشانی تا حد زیادی مورفولوژی لایه، طول عمر حامل ها  و عملکرد دستگاه را تغییر می دهد (2).

 

همچنین برای جذب بهتر نور در پروسکایت‌ها، از نانوبلورها استفاده می‌شود. نانوبلورهای پروسکایت متیل آمونیوم یدید سرب CH3NH3)PbI3) به کار رفته در سلول‌های خورشیدی مزوسکوپیک،  به عنوان جاذب های نوری تعریف می شوند. لایه نشانی این ذرات بر روی لایه‌های نازک و متخلخل TiO2، تمام رنگهای نور مرئی را جذب کرده و منجر به افزایش چگالی نور در لایه‌های نازک با ضخامت زیرمیکرون می‌شود و PCE تا 9/7% افزایش می‌یابد (3).


علاوه بر آن، لایه نشانی نانو ذرات Al2O3 چارچوبی با ساختار سوپرمزو (MSSC) تشکیل می‌دهند. با نازک‌تر شدن این لایه‌ی متخلخل، یک لایه‌ی نازک جامد و جاذب تشکیل می شود. این پروسکایت جاذب در دمای پایین (کمتر از c◦ 150) علاوه بر افزایش بهره‌ی PCE تا 9/1%، از پراکندگی بار و انتقال هر دو نوع حامل (الکترون‌ها و حفره‌ها) با بهره‌ی نزدیک به 100% حمایت می‌کند.

در نهایت با بهینه‌سازی ضخامت لایه‌ی Al2O3 در دمای پایین در سلول های خورشیدی پروسکایتی با ساختار سوپرمزو، بازده بالای 12/3%  حاصل می‌شود (4).

همچنین می‌توان لایه‌ی پروسکایت CH3NH3)PbI3) را با درجه‌ی خلوص بالا، بین دو لایه‌ی خیلی نازک که از مولکول‌های آلی تشکیل شده قرار داد. این مواد آلی با فرایندهای مبتنی بر محلول لایه نشانی می شوند. این مجموعه‌ی ساده، عاری از اکسید فلز و فراوری شده در دمای اتاق، بازده بالای 12% را در mwcm-2 100 می‌دهد (5).

 

 

[1] Nie, Wanyi, et al. “High-efficiency solution-processed perovskite solar cells with millimeter-scale grains.” Science 347.6221 (2015): 522-525.
[2] Vorpahl, Sarah M., et al. “Impact of microstructure on local carrier lifetime in perovskite solar cells.” Science 348.6235 (2015): 683-686.
[3] Kim, Hui-Seon, et al. “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%.” Scientific reports 2 (2012).
[4] Ball, James M., et al. “Low-temperature processed meso-superstructured to thin-film perovskite solar cells.” Energy & Environmental Science 6.6 (2013): 1739-1743.
[5] Malinkiewicz, Olga, et al. “Perovskite solar cells employing organic charge-transport layers.” Nature Photonics 8.2 (2014): 128-132.

 

 

 

 

نظرات


تصویر امنیتی تصویر امنیتی جدید

7 روز هفته، 24 ساعته پاسخگوی شما هستیم

social 16social 13social 09 social 05